Navier–Stokes–Fourier system with Dirichlet boundary conditions

نویسندگان

چکیده

We consider the Navier–Stokes–Fourier system describing motion of a compressible, viscous, and heat-conducting fluid in bounded domain Ω⊂Rd, d = 2, 3, with general non-homogeneous Dirichlet boundary conditions for velocity absolute temperature, associated density on inflow part. introduce new concept weak solution based satisfaction entropy inequality together balance law ballistic energy. show weak–strong uniqueness principle as well existence global-in-time solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TECHNISCHE UNIVERSITÄT BERLIN Moving Dirichlet Boundary Conditions

This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet bound...

متن کامل

Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions

when ε ≥ 0 is small. In particular, ∆2v + εv ≥ 0 in Ω, with v = ∆v = 0 on ∂Ω, implies v ≥ 0 for ε small. In numerical experiments ([14]) for one dimension a similar behaviour was observed under Dirichlet boundary conditions v = ∂ ∂nv = 0. In this paper we will derive a 3-G type theorem as in (1) but with G1,n replaced by the Green function Gm,n for the m-polyharmonic operator with Dirichlet bou...

متن کامل

Dynamical Casimir effect with Dirichlet and Neumann boundary conditions

We derive the radiation pressure force on a non-relativistic moving plate in 1+1 dimensions. We assume that a massless scalar field satisfies either Dirichlet or Neumann boundary conditions (BC) at the instantaneous position of the plate. We show that when the state of the field is invariant under time translations, the results derived for Dirichlet and Neumann BC are equal. We discuss the forc...

متن کامل

Stochastic Partial Differential Equations with Dirichlet White-noise Boundary Conditions

– The paper is devoted to one-dimensional nonlinear stochastic partial differential equations of parabolic type with non homogeneous Dirichlet boundary conditions of white-noise type. We formulate a set of conditions that a random field must satisfy to solve the equation. We show that a unique solution exists and that we can write it in terms of the stochastic kernel related to the problem. Thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis

سال: 2021

ISSN: ['1026-7360', '1563-504X', '0003-6811']

DOI: https://doi.org/10.1080/00036811.2021.1992396